Some car manufacturers claim that their vehicles could climb a slope of 42 ∘. For this to be possible, what must be the minimum coefficient of static friction between the vehicle’s tires and the road?

A. 0.4
B. 0.5
C. 0.7
D. 0.9

Respuesta :

Answer:

D. 0.9

Explanation:

Calculating minimum coefficient of static friction, we first resolve the forces (normal and frictional) acting on the vehicle at an angle to the horizontal into their x and y components. After this, we can now substitute the values of x and y components into equation of static friction. Diagrammatic illustration is attached.

Resolving into x component:

                        ∑[tex]F_{x} = F_{s} - mgsin\alpha =0[/tex]

                          [tex]F_{s} = mgsin\alpha[/tex]     ------(1)

Resolving into y component:

                        ∑[tex]F_{y} = F_{n} - mgcos\alpha =0[/tex]

                          [tex]F_{n} = mgcos\alpha[/tex]      ------(2)

Static frictional force, [tex]F_{s} \leq[/tex] μ [tex]F_{n}[/tex]       ------(3)

substituting [tex]F_{s}[/tex] from equation (1) and [tex]F_{n}[/tex] from equation (2) into equation (3)

                         [tex]mgsin\alpha \leq[/tex] μ [tex]mgcos\alpha[/tex]

                         [tex]sin\alpha \leq[/tex] μ [tex]cos\alpha[/tex]

                         μ [tex]\geq \frac {sin\alpha}{cos\alpha} [/tex]

                         μ [tex]\geq tan\alpha [/tex]

The angle the vehicles make with the horizontal α = 42°

                         μ ≥ tan 42°

                         μ ≥ 0.9

Ver imagen IamJerry