Respuesta :

Answer:

9(1/10) [1+(1/10)+(1/10)^2+(1/10)^3+.....]

Step-by-step explanation:

0.99999...= 9(1/10) + 9(1/10)^2+9(1/10)^3+9(1/10)^4+.....

taking 9(1/10) common,

=9(1/10) [1+(1/10)+(1/10)^2+(1/10)^3+.....]

therefore, this is the required geometric series.

  • the sum of the infinite series: 1+r+r^2+r^3+r^4+r^5+r^6....

is, [tex]\frac{1}{1-r}[/tex]

  • the series inside the square brackets are infinite geometric progression series.

so the whole sum =  9(1/10)[[tex]\frac{1}{1-\frac{1}{10} }[/tex]]

=9(1/10)[10/9]

=1

Answer:

A & C.

.99+.0099+.000099

&

.9+.09+.009

Step-by-step explanation: