Respuesta :
Answer:
[tex]\dfrac{1}{2}[/tex]
Step-by-step explanation:
Given the function [tex]h(x)=\dfrac{1}{8}x^3-x^2[/tex]
The average rate of change of the function h(x) over the interval [tex]a\le x\le b[/tex] can be calculated using formula
[tex]\dfrac{h(b)-h(a)}{b-a}[/tex]
In your case,
[tex]a=-2,\\ \\b=2,[/tex]
so the average rate of change is
[tex]\dfrac{h(2)-h(-2)}{2-(-2)}\\ \\=\dfrac{(\frac{1}{8}\cdot 2^3-2^2)-(\frac{1}{8}\cdot (-2)^3-(-2)^2)}{4}\\ \\=\dfrac{(1-4)-(-1-4)}{4}\\ \\=\dfrac{-3+5}{4}\\ \\=\dfrac{2}{4}\\ \\=\dfrac{1}{2}[/tex]
Answer:
I... don't understand why the answer below had such low ratings??!
The answer 1/2 is correct on khan academy if Im looking that the right question..
Step-by-step explanation:
