A car move with uniform acceleration along a straight line pqr .Its speed at p and r are 5m/s and 25m/s respectively if pq:qr is 1:2 the ratio of the time taken to travel pq and qr is

Respuesta :

Answer:

Answer: Option d.

Explanation:

Accelerated Motion

When an object changes its spped in the same amounts in the same times, the acceleration is constant and its value is  

[tex]\displaystyle a=\frac{v_f-v_o}{t}[/tex]

Where [tex]v_f, v_o, t[/tex] are the final speed, initial speed, and time taken to change them, respectively

From the above equation we can know

[tex]v_f=v_o+at[/tex]

The distance traveled is computed as

[tex]\displaystyle x=v_ot+\frac{at^2}{2}[/tex]

The question talks about a car moving in a straight line with constant acceleration. It goes through the points p,q,r such as

[tex]v_p=5\ m/s, v_r=25\ m/s[/tex]

The ratio of the distances traveled in each segment is

[tex]\displaystyle \frac{x_1}{x_2}=\frac{1}{2}[/tex]

being [tex]x_1[/tex] the distance from p to q and [tex]x_2[/tex] the distance from q to r

It means that

[tex]x_2=2x_1[/tex]

From the equation for speed

[tex]v_q=v_p+at_1\ \ \ ..........[1][/tex]

[tex]v_r=v_q+at_2\ \ \ ..........[2][/tex]

Replacing [1] into [2]

[tex]v_r=v_p+at_1+at_2[/tex]

[tex]v_r=v_p+a(t_1+t_2)[/tex]

Solving for a

[tex]\displaystyle a=\frac{v_r-v_p}{t_1+t_2}\ \ \ .........[3][/tex]

We now write the equation for both distances .

[tex]\displaystyle x_1=v_pt_1+\frac{at_1^2}{2}[/tex]

[tex]\displaystyle x_2=v_qt_2+\frac{at_2^2}{2}[/tex]

Using [1] again

[tex]\displaystyle x_2=(v_p+at_1)t_2+\frac{at_2^2}{2}[/tex]

Since

[tex]x_2=2x_1[/tex]

We have

[tex]\displaystyle (v_p+at_1)t_2+\frac{at_2^2}{2}=2\left (v_pt_1+\frac{at_1^2}{2}\right )[/tex]

Operating

[tex]\displaystyle v_pt_2+at_1t_2+\frac{at_2^2}{2}=2v_pt_1+at_1^2[/tex]

Rearranging

[tex]\displaystyle v_pt_2-2v_pt_1=at_1^2-at_1t_2-\frac{at_2^2}{2}[/tex]

Factoring both sides

[tex]\displaystyle v_p(t_2-2t_1)=\frac{a}{2}\left (2t_1^2-2t_1t_2-t_2^2  \right )[/tex]

Replacing the equation [3] for a :

[tex]\displaystyle 2v_p(t_2-2t_1)=\frac{v_r-v_p}{t_1+t_2}\left (2t_1^2-2t_1t_2-t_2^2  \right )[/tex]

Replacing [tex]v_p=5,\ v_r=25,\ v_r-v_p=20[/tex], and operating the denominator

[tex]\displaystyle 10(t_2-2t_1)\left (t_1+t_2  \right )=20\left (2t_1^2-2t_1t_2-t_2^2  \right )[/tex]

Operating and simplifying, we get a second-degree equation

[tex]\displaystyle t_2^2+t_1t_2-2t_1^2=0[/tex]

Factoring

[tex](t_2-t_1)(t_2+2t_1)=0[/tex]

The only positive and valid answer is

[tex]t_2=t_1[/tex]

Or equivalently

[tex]\displaystyle \frac{t_1}{t_2}=1[/tex]

The option d. is correct