Answer:
[tex]K_c=1.35\times 10^7[/tex]
Explanation:
The relation between Kp and Kc is given below:
[tex]K_p= K_c\times (RT)^{\Delta n}[/tex]
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
[tex]2R_{(g)}+A_{(g)}\rightleftharpoons2Z_{(g)} [/tex]
Given: Kp = [tex]5.51\times 10^5[/tex]
Temperature = 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
T = (25 + 273.15) K = 298.15 K
R = 0.082057 L atm.mol⁻¹K⁻¹
Δn = (2)-(2+1) = -1
Thus, Kc is:
[tex]5.51\times 10^5= K_c\times (0.082057\times 299)^{-1}[/tex]
[tex]K_c\frac{1}{24.535043}=551000[/tex]
[tex]K_c=13518808.69=1.35\times 10^7[/tex]