Respuesta :

wyskoj

Answer:

About 10.102 seconds

Step-by-step explanation:

Using the kinetics formula:

[tex]x = v_it + \frac{1}{2}at^2[/tex]

Substitute known values:

[tex]500=0t+\frac{1}{2}(9.8)t^2[/tex]

Solve for t:

[tex]1000=9.8t^2\\\frac{1000}{9.8}=t^2\\\sqrt{\frac{1000}{9.8}} =t\\10.102 \approx t[/tex]

Answer:

10.1 s

Step-by-step explanation:

Using equation of linear motion

h = ut + 1/2gt² where u = initial velocity = 0, the height from which the object is dropped = 500 m, g, acceleration due to gravity = 9.81m/s² and t is time in seconds

substitute the values into the equation

500 = 0t + 1/2gt²

500 × 2 = 9.81t²

1000 / 9.81 = t²

101.94 = t²

take square root of both side

√101.94 = t

t = 10.1 s