Question 6 options:

An online retailer wants to estimate the number of visitors that click on their advertisement from a particular website. Of 978 page views in a day, 8% of the users clicked on the advertisement.


Create a 90% confidence interval for the population proportion of visitors that click on the advertisement.

Respuesta :

Answer: [tex]=(0.06573,\ 0.09427)[/tex]

Step-by-step explanation:

The confidence interval for population proportion (p) is given by :_

[tex]\hat{p}\pm z^* \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

, where n= sample size

z* = Critical value.

[tex]\hat{p}[/tex] = Sample proportion.

Let be the true population proportion of visitors that click on the advertisement.

As per given , we have

n= 978

[tex]\hat{p}=0.08[/tex]

Critical value for 90% confidence interval : z* = 1.645   [ By z-table]

Now , 90% confidence interval for the population proportion of visitors that click on the advertisement:

[tex]0.08\pm (1.645) \sqrt{\dfrac{0.08(1-0.08)}{978}}[/tex]

[tex]0.08\pm (1.645) \sqrt{0.0000752556237219}[/tex]

[tex]0.08\pm (1.645) (0.00867499992633)[/tex]

[tex]\approx0.08\pm(0.01427)[/tex]

[tex]=(0.08-0.01427,\ 0.08+0.01427)=(0.06573,\ 0.09427)[/tex]

Hence, a 90% confidence interval for the population proportion of visitors that click on the advertisement. [tex]=(0.06573,\ 0.09427)[/tex]