Let A⊆R, let f:A⟶R and let c∈R be a cluster point of A. If lim┬(x⟶c)⁡f exists, and if |f| denotes the function defined for x∈A by |f|(x)≔|f(x)|, prove that |lim┬(x⟶c) |⁡f |=|lim┬(x⟶c)⁡|f|

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]A\subseteq R[/tex]

Let f:[tex]A\rightarrow R[/tex]

[tex]c\in R[/tex] be  a cluster point of A.

[tex]\lim_{(x\rightarrow c)}f(x)[/tex] exist let

[tex]\lim_{(x\rightarrow c)}f(x)=L[/tex]

If [tex]\mid f\mid[/tex] denotes the function and

[tex]\mid f(x)\mid=\mid f\mid (x)[/tex] for [tex]x\in A[/tex]

We have to prove that [tex]\mid \lim_(x\rightarrow c)f(x)\mid=\lim_(x\rightarrow c)\mid f\mid (x)[/tex]

[tex]\mid \lim_{(x\rightarrow c)}f(x)\mid=\lim_{(x\rightarrow c)}\mid f(x)\mid[/tex]

Substitute the value then we get

[tex]\mid \lim_{(x\rightarrow c)}f(x)\mid=\mid L\mid =\lim_{(x\rightarrow c)}\mid f\mid (x)[/tex]

Hence proved.