A cast-iron tube is used to support a compressive load. Knowing that E 5 10 3 106 psi and that the maximum allowable change in length is 0.025%, determine

(a) the maximum normal stress in the tube,
(b) the minimum wall thickness for a load of 1600 lb if the outside diameter of the tube is 2.0 in.

Respuesta :

Answer:

(a) 2.5 ksi

(b) 0.1075 in

Explanation:

(a)

[tex]E=\frac {\sigma}{\epsilon}[/tex]

Making [tex]\sigma[/tex] the subject then

[tex]\sigma=E\epsilon[/tex]

where [tex]\sigma[/tex] is the stress and [tex]\epsilon[/tex] is the strain

Since strain is given as 0.025% of the length then strain is [tex]\frac {0.025}{100}=0.00025[/tex]

Now substituting E for [tex]10\times 10^{6} psi[/tex] then

[tex]\sigma=(10\times 10^{6} psi)\times 0.00025=2500 si= 2.5 ksi[/tex]

(b)

Stress, [tex]\sigma= \frac {F}{A}[/tex] making A the subject then

[tex]A=\frac {F}{\sigma}[/tex]

[tex]A=\frac {\pi(d_o^{2}-d_i^{2})}{4}[/tex]

where d is the diameter and subscripts o and i denote outer and inner respectively.

We know that [tex]2t=d_o - d_i[/tex] where t is thickness

Now substituting

[tex]\frac {\pi(d_o^{2}-d_i^{2})}{4}=\frac {1600}{2500}[/tex]

[tex]\pi(d_o^{2}-d_i^{2})=\frac {1600}{2500}\times 4[/tex]

[tex](d_o^{2}-d_i^{2})=\frac {1600}{2500\times \pi}\times 4[/tex]

But the outer diameter is given as 2 in hence

[tex](2^{2}-d_i^{2})=\frac {1600}{2500\times \pi}\times 4[/tex]

[tex]2^{2}-(\frac {1600}{2500\times \pi}\times 4)=d_i^{2}[/tex]

[tex]d_i=\sqrt {2^{2}-(\frac {1600}{2500\times \pi}\times 4)}=1.784692324 in\approx 1.785 in[/tex]

As already mentioned, [tex]2t=d_o - d_i hence t=0.5(d_o - d_i)[/tex]

[tex]t=0.5(2-1.785)=0.1075 in[/tex]