Answer:
Step-by-step explanation:
Consider curl [tex](fF)[/tex] where [tex]f[/tex] is a scalar function and F is a vector function
[tex]F=F_{1}i +F_{2}j +F_{3}k[/tex]
i j k
[tex]curl(fF) = \frac{\partial}{\partial x}[/tex] [tex]\frac{\partial}{\partial y}[/tex] [tex]\frac{\partial}{\partial z}[/tex]
[tex]fF_{1}[/tex] [tex]fF_{2}[/tex] [tex]fF_{3}[/tex]
[tex]curl(fF)=i(\frac{\partial}{\partial y}(fF_{3})-\frac{\partial}{\partial z}(fF_{2}))-j(\frac{\partial}{\partial x}(fF_{3})-\frac{\partial}{\partial z}(fF_{1}))+k(\frac{\partial}{\partial x}(fF_{2})-\frac{\partial}{\partial y}(fF_{1}))[/tex]
[tex]=i(\frac{\partial}{\partial y}(F_{3})+\frac{\partial}{\partial y}(f)-\frac{\partial}{\partial z}(F_{2})-\frac{\partial}{\partial z}(f))-j(\frac{\partial}{\partial x}(F_{3})+\frac{\partial}{\partial x}(f)-\frac{\partial}{\partial z}(F_{1})-\frac{\partial}{\partial z}(f))+k(\frac{\partial}{\partial x}(F_{2})+\frac{\partial}{\partial x}(f)-\frac{\partial}{\partial y}(F_{1})-\frac{\partial}{\partial y}(f))[/tex]
[tex]curl(fF)=f(\Delta\times F)+(\Delta f)\times F[/tex]