Respuesta :

Answer:

The inequality for [tex]x[/tex] is:

[tex]x\geq 142[/tex]

Step-by-step explanation:

Given:

Width of rectangle = 3 ft

Height or length of rectangle = [tex](x+5)[/tex] ft

Perimeter is at least 300 ft

To write an inequality for [tex]x[/tex].

Solution:

Perimeter of a rectangle is given as:

[tex]2l+2w[/tex]

where [tex]l[/tex] represents length of the rectangle and [tex]w[/tex] represents the width of the rectangle.

Plugging in the given values in the formula, the perimeter can be given as:

⇒ [tex]2(x+5)+2(3)[/tex]

Using distribution:

⇒ [tex]2x+10+6[/tex]

Simplifying.

⇒ [tex]2x+16[/tex]

The perimeter is at lest 300 ft. So, the inequality can be given as:

⇒ [tex]2x+16\geq 300[/tex]

Solving for [tex]x[/tex]

Subtracting both sides by 16.

⇒ [tex]2x+16-16\geq 300-16[/tex]

⇒ [tex]2x\geq284[/tex]

Dividing both sides by 2.

⇒ [tex]\frac{2x}{2}\geq \frac{284}{2}[/tex]

⇒ [tex]x\geq 142[/tex]   (Answer)