A particle is moving along a straight line such that its' acceleration is defined as
a(v) = (-2v) m/s^2 where v is in meters per second.
If v = 20 m/s when s= 0 and t=0 find:

1. The particles position as a function of time
2. The particles velocity as a function of time
3. The particles acceleration as a function of time

Respuesta :

Answer:

1. [tex]s=-vt^2[/tex]

2. [tex]v=\frac{s}{t}[/tex]

3. [tex]a=-2\times \frac{s}{t}[/tex]

Explanation:

Given:

Acceleration as a Function of velocity, [tex]a=-2v\ m.s^{-2}[/tex]

Velocity, [tex]v=20\ m.s^{-1}[/tex] at displacement s=0 and t=0

1.

Particles position as a function of time:

Using equation of motion:

[tex]s=u.t+\frac{1}{2} a.t^2[/tex]

where:

[tex]u =[/tex] initial velocity

[tex]v=[/tex] final velocity

so,

[tex]s=0+\frac{1}{2}\times (-2v) t^2[/tex]

[tex]s=-vt^2[/tex]

2.

Particle velocity as a function of time:

[tex]v=\frac{s}{t}[/tex]

3.

Particles acceleration as a function of time:

[tex]a=-2\times \frac{s}{t}[/tex]