Answer:
The Inequality representing the number of hours she want to babysit to make a profit is [tex]5+3x>26[/tex].
Katie should babysit for more than 7 hours in order to make profit.
Step-by-step explanation:
Given:
Money spent on advertising = $26
Initial fee = $5
Hourly charge = $3
We need to find the number of hours she want to babysit to make a profit.
Solution:
Let the number of hours be 'x'.
Now we can say that;
The sum of Initial fee and Hourly charge multiplied by number of hours should be greater than Money spent on advertising .
framing in equation form we get;
[tex]5+3x>26[/tex]
Hence The Inequality representing the number of hours she want to babysit to make a profit is [tex]5+3x>26[/tex].
On Solving the above Inequality we get;
Now Using Subtraction property of Inequality we will subtract both side by 5 we get;
[tex]5+3x-5>26-5\\\\3x>21[/tex]
Now Using Division Property of Inequality we will divide both side by 3 we get;
[tex]\frac{3x}{3}>\frac{21}{3}\\\\x>7[/tex]
Hence Katie should babysit for more than 7 hours in order to make profit.
Interpretation:
when x=7
Amount earned will be = [tex]5+3x=5+3\times7 =5+21=\$26[/tex]
Profit earned will be = Amount earned - Money spent on advertising = 26 -26 =0
when x= 8
Amount earned will be = [tex]5+3x=5+3\times8 =5+24=\$29[/tex]
Profit earned will be = Amount earned - Money spent on advertising = 29 -26 =$3
Hence at 7 hours of babysitting profit will be 0 and at 8 hours of babysitting profit will be $3.