Answer:
1020g
Explanation:
Volume of can=[tex]1100cm^3=1100\times 10^{-6}m^3[/tex]
[tex]1cm^3=10^{-6}m^3[/tex]
Mass of can=80g=[tex]\frac{80}{1000}=0.08kg[/tex]
1Kg=1000g
Density of lead=[tex]11.4g/cm^3=11.4\times 10^{3}=11400kg/m^3[/tex]
By using [tex]1g/cm^3=10^3kg/m^3[/tex]
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =[tex]F_b=Weight of can+weight of lead[/tex]
[tex]\rho_wV_cg=m_cg+m_lg[/tex]
Where [tex]\rho_w=10^3kg/m^3=[/tex]Density of water
[tex]m_c=[/tex]Mass of can
[tex]m_l=[/tex]Mass of lead
[tex]V_c=[/tex]Volume of can
Substitute the values then we get
[tex]1000\times 1100\times 10^{-6}=0.08+m_l[/tex]
[tex]1.1-0.08=m_l[/tex]
[tex]m_l=1.02 kg=1.02\times 1000=1020g[/tex]
[tex]1 kg=1000g[/tex]
Hence, 1020 grams of lead shot can it carry without sinking water.