1. Assume ​Y=1​+X+u​, where X​, Y​, and ​u=v+X are random​ variables, v is independent of X​; ​E(v​)=0, ​Var(v​)=1​, ​E(X​)=1, and ​Var(X​)=2.

Respuesta :

Answer:

Var(u​|X​=1) = 1

Var(Y|X​=1) = 1

​Var(u|X​) = 3

Var(Y|X​) = 9

Step-by-step explanation:

First, we need to identify the properties of the variance, so:

1. Var(a) = 0 , if a is constant

2. [tex]Var(aX) = a^{2} V(X)[/tex],  Where a is constant and X is a random variable

3. [tex]Var(aX+b)=a^{2} Var(X)+0[/tex], Where a and b are constants and X is a random variable.

4. [tex]Var(X + Y)=Var(X) + Var(Y)[/tex], Where X and Y are random variables and are independents.

Then, if ​Y=1​+X+u​, where X​, Y​, and ​u=v+X are random​ variables, v is independent of X​; ​E(v​)=0, ​Var(v​)=1​, ​E(X​)=1, and ​Var(X​)=2, the variance of the following cases are calculated as:

Var(u|X​=1) = Var( v + X | X = 1) = Var( v + 1 )    

                 = Var(v) + Var(1)                            

                  = 1 + 0 = 1

Var(Y|X​=1) = Var( 1 + X + u | X = 1 )

                 = Var (1 + X + v + X|X=1)

                 = Var(1 + 1 + v + 1)                      

                 = Var(3) + Var(v)                      

                 = 0 + 1 = 1

​Var(u|X​) = Var ( v + X | X)

             = Var ( v + X)

             = Var(v) + Var(X)

             =  1 + 2  = 3

Var(Y|X​) = Var ( 1 + X + u | X)

             = Var ( 1 + X + v + X | X)

             = Var ( 1 + 2X + v)

             = Var(1) + Var(2X) + Var(v)

              [tex]= Var(1)+2^{2}*Var(X)+Var(v)[/tex]

             = 0 + 4*2 + 1 = 8 + 1 = 9