Respuesta :
Answer:
Option "StartFraction 1 Over x Superscript 21 Baseline y Superscript 12 Baseline EndFraction" is correct.
Therefore the simplest form is [tex](\frac{(x^{-3})(y^2)}{(x^4)(y^6)})^3=\frac{1}{x^{21}.y^{12}}[/tex]
Step-by-step explanation:
Given expression is (StartFraction (x Superscript negative 3 Baseline) (y squared) Over (x Superscript 4 Baseline) (y superscript 6 Baseline) EndFraction) cubed
The given expression can be written as
[tex](\frac{(x^{-3})(y^2)}{(x^4)(y^6)})^3[/tex]
To find the simplest form of the given expression :
[tex](\frac{(x^{-3})(y^2)}{(x^4)(y^6)})^3=(\frac{x^{-3}y^2}{x^4y^6})^3[/tex]
[tex]=(\frac{1}{x^4.x^3y^6.y^{-2}})^3[/tex] ( using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )
[tex]=(\frac{1}{x^{4+3}y^{6-2}})^3[/tex] (using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=(\frac{1}{x^7y^4})^3[/tex]
[tex]=\frac{1}{(x^7y^4)^3}[/tex]
[tex]=\frac{1}{(x^7)^3.(y^4)^3}[/tex] ( using the property [tex](a^m)^n=a^{mn}[/tex] )
[tex]=\frac{1}{x^{21}.y^{12}}[/tex]
Therefore the simplest form is [tex](\frac{(x^{-3})(y^2)}{(x^4)(y^6)})^3=\frac{1}{x^{21}.y^{12}}[/tex]
Option "StartFraction 1 Over x Superscript 21 Baseline y Superscript 12 Baseline EndFraction" is correct
Answer:
its b!
Step-by-step explanation:
got it right on ed :)