Two charges Q =2 C and q=1 nC are 1 m apart. If the electric force beween them is 18 N what is the magnitude of the electric field due to Q at q. The format of the answer must be g

Respuesta :

Answer:

[tex]E=1.8\times 10^{10}\ N.C^{-1}[/tex]

Explanation:

Given:

  • one charge, [tex]Q=2\ C[/tex]
  • another charge, [tex]q=10^{-9}\ C[/tex]
  • distance between the two charges, [tex]r=1\ m[/tex]
  • force between the charges, [tex]F=18\ N[/tex]

We know from the Coulomb's law:

[tex]F=\frac{1}{4\pi.\epsilon_0} \times \frac{Q.q}{r^2}[/tex] ...........(1)

where:

[tex]\epsilon_0=[/tex] permittivity of free space

Also we have electric field due to Q at q (which is at a distance of 1 m):

[tex]E=\frac{1}{4\pi.\epsilon_0} \times \frac{Q}{r^2}\ [N.C^{-1}][/tex] ...........(2)

From (1) & (2)

[tex]E=\frac{F}{q}[/tex]

[tex]E=\frac{18}{10^{-9}}[/tex]

[tex]E=1.8\times 10^{10}\ N.C^{-1}[/tex]

Answer:

magnitude of the electric field = 1.8 × [tex]10^{10}[/tex] N/C

Explanation:

given data

charge Q =2 C

charge q = 1 nC  = 1 × [tex]10^{-9}[/tex] C

distance r = 1 m

electric force = 18 N

solution

we know that here electric field due to Q is

E = k × [tex]\frac{Q}{r^2}[/tex]   ..............1

here q distance is 1 m

now we  apply here Coulomb’s law and get here electric force

F = k ×[tex]\frac{Q*q}{r^2}[/tex]   ..........2

we know constant k  = 8.988 × [tex]10^{9}[/tex] Nm²/C²

so from above both equation we get

electric filed = [tex]\frac{force}{charge}[/tex]    .................3

put here value

electric filed = [tex]\frac{18}{1*10^{-9}}[/tex] = 1.8 × [tex]10^{10}[/tex] N/C