Let Fequalsleft angle 2 xy plus z squared comma x squared plus yz comma 2 xz plus StartFraction y squared Over 2 EndFraction right angle and let C be the circle r​(t)equalsleft angle 6 sine t comma 4 sine t comma 3 cosine t right angle​, for 0less than or equalstless than or equals2pi. Evaluate ModifyingBelow Contour integral With Upper C Bold Upper F times d Bold r using any method.

Respuesta :

Answer:

[tex]\oint_C F \,dr = 0[/tex]

Step-by-step explanation:

In this problem, we have a vector field

                 [tex]F = \left \langle 2x-z^2,x^2+yz,-2xz +\frac{y^2}{2} \right \rangle[/tex].

We need to find the line integral

                                      [tex]\oint_C F \,dr[/tex]

where [tex]C[/tex] is a circle

                    [tex]r(t) = \left \langle 2 \cos t, 4\sin t, 5 \cos t \right \rangle, \quad 0 \leq t \leq 2 \pi[/tex].

As we can see, the vector filed [tex]F[/tex] is defined [tex]\forall (x,y,z) \in \mathbb{R}^3[/tex] and its component functions have continuous partial derivatives.

First, we need to find the curl of the vector filed [tex]F[/tex].

[tex]\text{curl} F = \begin{vmatrix}i & j & k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\2xy-z^2 & x^2 + yz & \frac{y^2}{2} - 2xz\\\end{vmatrix}[/tex]

Therefore,

[tex]\text{curl}F = i \left( \frac{\partial}{\partial y} \left( \frac{y^2}{2} - 2xz\right) - \frac{\partial}{\partial z} \left( x^2+yz\right)\right) - j \left( \frac{\partial}{\partial x} \left( \frac{y^2}{2} - 2xz\right) - \frac{\partial}{\partial z} \left( 2xy-z^2\right)\right)\\ \phantom{12356} +k \left( \frac{\partial}{\partial x} \left( x^2+yz\right) - \frac{\partial}{\partial y} \left( 2xy-z^2\right)\right)[/tex]

Now, we can easily calculate the needed partial derivatives and we obtain

[tex]\text{curl} F = i(y-y) - j(-2z + 2z) + k(2x-2x) = 0i + 0j+0k = \langle 0,0,0 \rangle[/tex]

So, the vector field [tex]F[/tex] is defined [tex]\forall (x,y,z) \in \mathbb{R}^3[/tex] , its component functions have continuous partial derivatives and [tex]\text{curl} F = 0[/tex] .Therefore, by a well-known theorem, [tex]F[/tex] is a conservative field.

Since [tex]C[/tex] is a closed path, we obtain that

                                           [tex]\oint_C F \,dr = 0[/tex]