Answer:
[tex]x+2y=-11[/tex]
Step-by-step explanation:
Slope intercept form of a line is given by:
[tex]y=mx+b[/tex]
Where
m is the slope and b is the y-intercept
Given slope is [tex]-\frac{1}{2}[/tex]
We can write:
[tex]y=-\frac{1}{2}x+b[/tex]
Now to find b, we replace x with -3 and y with -4, given, so we have:
[tex]y=-\frac{1}{2}x+b\\-4=-\frac{1}{2}(-3)+b\\-4=\frac{3}{2}+b\\b=-5.5[/tex]
So, the equation is:
[tex]y=-\frac{1}{2}x-\frac{11}{2}[/tex]
Now,
The standard form is given by:
[tex]Ax+By=C[/tex]
So, we take x and y to left side and the constant to right side. Rearranging, we get:
[tex]y=-\frac{1}{2}x-\frac{11}{2}\\2y=-x-11\\x+2y=-11[/tex]
The first answer choice is right.