A spelunker is surveying a cave. She follows a passage 120 mm straight west, then 250 mm in a direction 45ââ east of south, and then 280 mm at 30ââ east of north. After a fourth unmeasured displacement, she finds herself back where she started.

(A) Use a scale drawing to determine the magnitude of the fourth displacement. Express your answer using two significant figures.

(B) Determine the direction of the fourth displacement.Express your answer using two significant figures.

Respuesta :

Answer:

R = 207.45 mm , θ_return = 18.47 south west

Explanation:

This vector addition exercise is schematized in the attachment where the displacements are

1    d1 = 120 mm west

2   d2 = 250mm at 45 south east

3   d3 = 280 mm at 30 east of nort.

R  is the final displacement that takes the goat to its initial point (origin)

The analytical way to perform this exercise is to find the components of each displacement and add them

Decompose the displacement using trigonometry

Displacement d1

       d1ₓ = 120 cos 180 = -120 mm

Displacement d2, with the angle measured from the axis this   θ = 270 + 45

     sin 45 = [tex]d2_{y}[/tex] / d2

     cos 45 = d2ₓ / d2

      [tex]d2_{y}[/tex]  = d2 sin45

      [tex]d2_{y}[/tex]  = 250 sin (270 + 45)

      [tex]d2_{y}[/tex]  = -176.77 mm

     d2ₓ = d2 cos (270 + 45)

     d2ₓ = 176.77 mm

displacement d3, for half the angle from the east axis  θ = 90-30 = 60

     sin 60 =  [tex]d3_{y}[/tex]  / d3

     cos 60 = d3ₓ / d3

      [tex]d3_{y}[/tex]  = d3 sin 60

     d3ₓ = d3 cos 60

      [tex]d3_{y}[/tex]  = 280 sin 60 = 242.49 mm

     d3ₓ = 280 cos 60 = 140 mm

Having all the displacement components we can find the total displacement

         Rₓ = d1ₓ + d2ₓ + d3ₓ

         Ry =  [tex]d1_{y}[/tex] + [tex]d2_{y}[/tex] +  [tex]d3_{y}[/tex]  

         

          Rₓ = -120 + 176.77 +140

         Rₓ = 196.77 mm

         

         Ry = 0 -176.77 +242.49

         Ry = 65.72 mm

Therefore the displacement you must make to return to the starting point is

         R = RA Rx2 + Ry2)

         R = RA (196.77 2 + 65.72 2)

         R = 207.45 mm

 We used trigonometry

        tan tea = RY / Rx

        tea = tan-1 Ry / Rx

        ea = tan-1 (65.72 / 196.77)

        tea = 18.47

This is the point where the girl is, to return to its origin this path must be serial, but in the opposite direction,

       θ_return = 18.47 south west

Ver imagen moya1316