Respuesta :

Answer:

The volume of the observatory is 497.43 [tex]feet^{3}[/tex]

Step-by-step explanation:

i) The diameter of the floor is 10 feet. The floor is circular and has a radius,          

    r =  [tex]\frac{10}{2}[/tex] = 5 feet.

   Therefore the area of the circular floor of the observatory

     = [tex]\pi r^{2}[/tex]      =   3.14159 × [tex]5^{2}[/tex]    =    78.54 [tex]feet^{2}[/tex]

ii) The observatory is made up of two parts

  a)  3 foot tall cylinder

      ∴ volume of cylinder = [tex]\pi r^{2}[/tex]   × h

                                         = 78.54 × 3

                                         = 235.62 [tex]feet^{3}[/tex]

   b)  hemisphere = [tex]\frac{1}{2}[/tex] × [tex]\frac{4}{3} \pi r^{3}[/tex] = 0.6667 × 78.54 × 5   =  261.81 [tex]feet^{3}[/tex]

    c) Therefore the total volume of the observatory is = a) + b)

         = 235.62 + 261.81 =   497.43 [tex]feet^{3}[/tex]