Respuesta :

Answer:

\int \limits_{-2}^{4} f(x) \, dx

Step-by-step explanation:

The objective is to write

                       [tex]\int \limits_{-3}^{1} f(x) \, dx + \int \limits_{1}^{4} f(x) \, dx - \int \limits_{-3}^{-2} f(x) \, dx[/tex]

as a single integral in the form

                                       [tex]\int \limits_{a}^{b} f(x)\, dx[/tex].

We consider the segments [tex][-3, 1], [1, 4][/tex] and [tex][-3,-2][/tex].  If we combine the first and the second  segment, we obtain

                                 [tex][-3,1] \cup [1,4] = [-3,4][/tex]

Therefore, adding the first two integrals gives

                       [tex]\int \limits_{-3}^{1} f(x) \, dx + \int \limits_{1}^{4} f(x) \, dx = \int \limits_{-3}^{4} f(x) \, dx[/tex]

Now,we have

                                  [tex]\int \limits_{-3}^{4} f(x) \, dx - \int \limits_{-3}^{-2} f(x) \, dx[/tex]

To subtract them, we need to find the difference of the segments [tex][-3,4][/tex] and [tex][-3,-2][/tex].

                                [tex][-3,4] \; \backslash \; [-3,-2] = [-2,4][/tex]

Therefore,

                          [tex]\int \limits_{-3}^{4} f(x) \, dx - \int \limits_{-3}^{-2} f(x) \, dx = \int \limits_{-2}^{4} f(x) \, dx[/tex]

Thus, the single integration of all the definite integral is mentioned below:

[tex]\int_{-2}^{4} f(x) dx[/tex]

Given the integral is,

[tex]\int_{-3}^{1} f(x) dx + \int_{1}^{4} f(x) dx - \int_{-3}^{-2} f(x)dx[/tex]

We need to change the whole definite integral into a single integral.

Now, we have the limits of integrations are [ - 3, 1 ], [ 1, 4 ], and [ - 3, -2 ].

Now, the first limit and second limit of integration are in addition, therefore combining forms of the integration are the union of these units.

Thus,

[ - 3, 1 ] U [ 1, 4 ] = [ -3 , 4 ]

Now, the second limit and third limit of integration are in subtraction, therefore combining forms of the integration are the intersection of these units.

Thus,

[ 1, 4 ] intersection [ - 3, -2 ] = [ null set]

Now, the combination of [ -3 , 4 ] and [ -null set] is [  - 2, 4].

Thus, the single integration of all the definite integral is mentioned below:

[tex]\int_{-2}^{4} f(x) dx[/tex]

To know more about the integrals, please refer to the link:

https://brainly.com/question/22008756