Respuesta :

Answer:

E.) 1

Step-by-step explanation:

Firstly we will solve for L.H.S.

L.H.S. =[tex]Csc^2\theta[/tex]

Since we know that [tex]Csc^2\theta[/tex] is the inverse of [tex]Sin^2\theta[/tex].

So we can say that;

[tex]csc^2\theta=\frac{1}{sin^2\theta}[/tex]

Now For R.H.S.

[tex]Cot^2\theta+1[/tex]

Since we  can rewrite [tex]cot^2\theta[/tex] as [tex]\frac{cos^2\theta}{sin^2\theta}[/tex].

Now we can say that the R.H.S. is;

[tex]\frac{cos^2\theta}{sin^2\theta}+1[/tex]

Now we add the fraction and get;

[tex]\frac{cos^2\theta+sin^2\theta}{sin^2\theta}[/tex]

Now according to trigonometric identity;

[tex]cos^2\theta+sin^2\theta=1[/tex]

So, [tex]\frac{cos^2\theta+sin^2\theta}{sin^2\theta}=\frac{1}{sin^2\theta}[/tex]

Here,

[tex]csc^2\theta=\frac{1}{sin^2\theta}[/tex]   and     [tex]Cot^2\theta+1[/tex] = [tex]\frac{1}{sin^2\theta}[/tex]  

L.H.S. = R.H.S.

Hence [tex]csc^2\theta=cot^2\theta+1[/tex]