(a) At what height above Earth’s surface is the energy required to lift a satellite to that height equal to the kinetic energy required for the satellite to be in orbit at that height?
(b) For greater heights, which is greater, the energy for lifting or the kinetic energy for orbiting?

Respuesta :

Answer:

Explanation:

Gravitational Potential Energy at earth surface [tex]U_1=\frac{GM_em}{R_e}[/tex]

Gravitational Potential Energy at height h is [tex]U_2=\frac{GM_em}{R_e+h}[/tex]

Energy required to lift the satellite [tex]E_1=U_1-U_2[/tex]

[tex]E_1=\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}[/tex]

Now Energy required to orbit around the earth

[tex]E_2=\frac{1}{2}mv_{orbit}^2=\frac{GM_2m}{2(R_e+h)}[/tex]

[tex]\Delta E=E_1-E_2[/tex]

[tex]\Delta E=\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}-\frac{GM_2m}{2(R_e+h)}[/tex]

[tex]E_1=E_2[/tex]  (given)

[tex]\frac{GM_em}{R_e}-\frac{GM_em}{R_e+h}-\frac{GM_2m}{2(R_e+h)}=0[/tex]

[tex]\frac{1}{R_e}-\frac{3}{2(R_e+h)}=0[/tex]

[tex]h=\frac{R_e}{2}[/tex]

[tex]h=3.19\times 10^6\ m[/tex]

(b)For greater height [tex]E_1[/tex]  is greater than [tex]E_2[/tex]

thus energy to lift the satellite is more than orbiting around earth