Respuesta :

Slope-intercept form is y = mx + b  

[m is the slope, b is the y-intercept or the y value when x = 0 ---> (0, y)  or the point where the line crosses through the y-axis]

To find the slope, use the slope formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]       Plug in the two points into the equation

(2, 1) --->   (x₁, y₁)

(0, 2) --->  (x₂, y₂)

[tex]m = \frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{2-1}{0-2}[/tex]

[tex]m=-\frac{1}{2}[/tex]       Now that you have the slope, plug it in:

y = mx + b

y = -1/2x + b       To find b, plug in one of the points. I will use (0, 2)

2 = -1/2(0) + b

2 = b          Now plug it in:

[tex]y=-\frac{1}{2}x+2[/tex]

Answer: y = -x/2 + 2

Step-by-step explanation:

The equation of a line given two points , is calculated by the formula :

[tex]\frac{y-y_{1}}{x - x_{1}}[/tex] = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

[tex]x_{1}[/tex] = 2

[tex]x_{2}[/tex] = 0

[tex]y_{1}[/tex] = 1

[tex]y_{2}[/tex] = 2

substituting the values , we have

[tex]\frac{y-1}{x-2}[/tex] = [tex]\frac{2-1}{0-2}[/tex]

[tex]\frac{y-1}{x-2}[/tex] = [tex]\frac{1}{-2}[/tex]

-2(y-1) = x-2

-2y + 2 = x - 2

-2y = x - 2 - 2

-2y = x - 4

writing the equation in slope intercept form , we have

y = -x/2 + 2