Respuesta :

Answer:

The ratio of AC to CB is 1.677 to  5.03

Step-by-step explanation:

Step 1: Finding the distance of AC

By using distance formula

[tex]AC = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]

Substituting the values

[tex]AC = \sqrt{(1.5 -0)^2 + (0.75 -0)^2}[/tex]

[tex]AC = \sqrt{(1.5 )^2 + (0.75)^2}[/tex]

[tex]AC = \sqrt{2.25 +0.5625 }[/tex]

[tex]AC = \sqrt{2.8125 }[/tex]

AC= 1.677

Step 2: Finding the distance of CB

[tex]CB = \sqrt{(6 - 1.5)^2 + (3 - 0.75)^2}[/tex]

Substituting the values

[tex]CB = \sqrt{(4.5)^2 + (2.25)^2}[/tex]

[tex]CB = \sqrt{(20.25) + (5.0625)}[/tex]

[tex]CB = \sqrt{25.3125}[/tex]

CB = 5.03

The Ratio is   1.677 to  5.03