Answer:
a) [tex] \frac{dr}{dt}= -\lambda r[/tex]
[tex] r(t) = K e^{-\lambda t}[/tex]
b) [tex] r(t)= r_o e^{-\lambda t}[/tex]
Step-by-step explanation:
For this case we have the following info provided:
[tex] r(t) [/tex] represent the amount of particular radioactive isotope at time t
[tex] t[/tex] represent the time
[tex]-\lambda[/tex] represent the decay rate parameter.
Part a
We can use the following proportional model given by this differential equation:
[tex] \frac{dr}{dt}= -\lambda r[/tex]
If we reorder the expression we got:
[tex] \frac{dr}{r} = - \lambda dt[/tex]
If we integrate both sides we got:
[tex] ln|r| = -\lambda t +C[/tex]
And if we apply exponentials we got:
[tex] r = e^{-\lambda t} e^C[/tex]
So then if [tex] e^C =k[/tex]we can rewrite the model like this:
[tex] r(t) = K e^{-\lambda t}[/tex]
Part b
For this case since we know that [tex] t=0, r(0) = r_o[/tex] if we replace this condition in our formula we got:
[tex] r_o = K e^{-\lambda *0} =K[/tex]
So then [tex] K=r_o[/tex] and our model is given by:
[tex] r(t)= r_o e^{-\lambda t}[/tex]