Graph g(x)=3x2−12x−3 .

Answer:
Step-by-step explanation:
The function is given by [tex]g(x) = 3x^{2} - 12x - 3[/tex].
Differentiating the function, we get [tex]\frac{d g(x)}{dx} = 6x - 12[/tex].
Now, at x = 2, 6x - 12 will be 0.
Hence, at x = 2, either the function will have maximum or minimum value.
g(2) = 12 - 24 -3 = -15.
g(1) = 3 -12 -3 = -12.
g(0) = -3.
Hence, the given function passes through (2, -15), (1, -12) and (0, -3).