Suppose quantity s is a length and quantity t is a time. Suppose the quantities vand aare defined by v = ds/dt and a = dv/dt. (a) What is the dimension of v? (b) What is the dimension of the quantity a?
What are the dimensions of (c)vdt, (d) a dt, and (e) da/dt?

Respuesta :

Explanation:

(a) Velocity is given by :

[tex]v=\dfrac{ds}{dt}[/tex]

s is the length of the distance

t is the time

The dimension of v will be, [tex][v]=[LT^-1][/tex]      

(b) The acceleration is given by :

[tex]a=\dfrac{dv}{dt}[/tex]

v is the velocity

t is the time

The dimension of a will be, [tex][a]=[LT^{-2}][/tex]

(c) Since, [tex]d=\int\limits{v{\cdot}dt} =[LT^{-1}][T]=[L][/tex]

(d) Since, [tex]v=\int\limits{a{\cdot}dt} =[LT^{-2}][T]=[LT^{-1}][/tex]

(e)

[tex]\dfrac{da}{dt}=\dfrac{[LT^{-2}]}{[T]}[/tex]

[tex]\dfrac{da}{dt}=[LT^{-3}]}[/tex]

Hence, this is the required solution.