Answer:
The values for the given equations are x=2,y=2 and z=1
Step-by-step explanation:
Given equations are [tex]x+2y+3z=9\hfill (1)[/tex]
[tex]x-y-z=-1\hfill (2)[/tex]
[tex]2x+y-2z=4\hfill (3)[/tex]
Now solving the given equations
Subtracting equations (1) and (2) we get
[tex]x+2y+3z=9[/tex]
[tex]x-y-z=-1[/tex]
________________
[tex]3y+4z=10\hfill (4)[/tex]
Multiplying the equation (2) into 2 we get
[tex]2x-2y-2z=-2\hfill (5)[/tex]
Now subtracting equations (5) and (3) we get
[tex]2x-2y-2z=-2[/tex]
[tex]2x+y-2z=4[/tex]
________________
-3y=-6
[tex]y=\frac{6}{3}[/tex]
Therefore y=2
Substitute y=2 in equation (4) we get
3y+4z=10
3(2)+4z=10
4z=10-6
[tex]z=\frac{4}{4}[/tex]
Therefore z=1
Substitute y=2 and z=1 in equation (1) we get
x+2(2)+3(1)=9
x=9-3-4
Therefore x=2
Therefore the values for the given equations are x=2,y=2 and z=1