Answer:
1500066.66
Step-by-step explanation:
Given: [tex](2\times10^{5} )/(3\times 10^{3} ) + 3\times10^{3} \times 5\times10^{2}[/tex]
Now, simplifying it.
Using PEDMAS in solving the expression
First opening the parenthesis
= [tex]2\times10^{5} /3\times 10^{3} + 3\times10^{3} \times 5\times10^{2}[/tex]
Next dividing the number
as per law of indices, [tex]x^{m} \div x^{n} = x^{m-n}[/tex]
= [tex]2\times10^{5-3} /3 + 3\times10^{3} \times 5\times10^{2}[/tex]
= [tex]2\times10^{2} /3 + 3\times10^{3} \times 5\times10^{2}[/tex]
= [tex]\frac{2\times10^{2} }{3} + 3\times10^{3} \times 5\times10^{2}[/tex]
Next multiplying the number as per PEDMAS
as per law of indices, [tex]x^{m} \times x^{n} = x^{m+n}[/tex]
= [tex]\frac{2\times10^{2} }{3} + 15\times10^{3+2}[/tex]
= [tex]\frac{2\times10^{2} }{3} + 15\times10^{5}[/tex]
= [tex]\frac{2\times 100}{3} + 15\times10^{5}[/tex]
Next dividing the number as per PEDMAS
= [tex]2\times 33.33 + 15\times10^{5}[/tex]
Next multiplying the number as per PEDMAS
= [tex]66.66+1500000[/tex]
Now adding the number
= 1500066.66