Respuesta :

Answer:

1500066.66

Step-by-step explanation:

Given: [tex](2\times10^{5} )/(3\times 10^{3} ) + 3\times10^{3} \times 5\times10^{2}[/tex]

Now, simplifying it.

Using PEDMAS in solving the expression

First opening the parenthesis

= [tex]2\times10^{5} /3\times 10^{3} + 3\times10^{3} \times 5\times10^{2}[/tex]

Next dividing the number

as per law of indices, [tex]x^{m} \div x^{n} = x^{m-n}[/tex]

= [tex]2\times10^{5-3} /3 + 3\times10^{3} \times 5\times10^{2}[/tex]

= [tex]2\times10^{2} /3 + 3\times10^{3} \times 5\times10^{2}[/tex]

= [tex]\frac{2\times10^{2} }{3} + 3\times10^{3} \times 5\times10^{2}[/tex]

Next multiplying the number as per PEDMAS

as per law of indices, [tex]x^{m} \times x^{n} = x^{m+n}[/tex]

= [tex]\frac{2\times10^{2} }{3} + 15\times10^{3+2}[/tex]

= [tex]\frac{2\times10^{2} }{3} + 15\times10^{5}[/tex]

= [tex]\frac{2\times 100}{3} + 15\times10^{5}[/tex]

Next dividing the number as per PEDMAS

= [tex]2\times 33.33 + 15\times10^{5}[/tex]

Next multiplying the number as per PEDMAS

= [tex]66.66+1500000[/tex]

Now adding the number

= 1500066.66