Respuesta :
Answer:
[tex](4y^{6})^{3}-(10z^{2})^{3}[/tex]
Step-by-step explanation:
we have
[tex]64y^{18}-1000z^{6}[/tex]
we know that
[tex]64=4^{3}[/tex]
[tex]y^{18}=(y^{6})^{3}[/tex]
[tex]1000=10^{3}[/tex]
[tex]z^{6}=(z^{2})^{3}[/tex]
Substitute the values in the expression
[tex](4^{3})((y^{6})^{3})-(10^{3})((z^{2})^{3})[/tex]
[tex](4y^{6})^{3}-(10z^{2})^{3}[/tex]
Answer:
[tex](4y^6)^3-(10z^2)^3[/tex]
Step-by-step explanation:
We have to find which expression is equivalent to
[tex]64y^{18}-1000z^6[/tex]
This can also be written as:
[tex]4^3(y^6)^3-10^3(z^2)^3\\\\=(4y^6)^3-(10z^2)^3[/tex]
Hence, option first is correct