Prove [tex]\Delta ABC\cong \Delta GFE[/tex]
The sides opposite to equal angles are equal
∴[tex]DE=DC[/tex]
Subtract [tex]DC[/tex] and [tex]DE[/tex] from [tex]DB[/tex] and [tex]DF[/tex] respectively.
[tex]DB-DC=DF-DE[/tex]
We get, [tex]BC=EF[/tex]------Eq [tex]1[/tex]
[tex]\angle DEC\cong \angle DCE[/tex] (Given)
[tex]\angle DEC= \angle DCE[/tex] (Vertically opposite angle)
[tex]\angle DEC= \angle GEF[/tex] (Vertically opposite angle)
Hence, [tex]\angle ACB= \angle GEF[/tex]------Eq [tex]2[/tex]
In [tex]\Delta ABC[/tex] and [tex]\Delta GFE[/tex]
[tex]BC=EF[/tex] (From eq [tex]1[/tex])
[tex]\angle ACB= \angle GEF[/tex] ( From eq [tex]2[/tex])
[tex]\angle B\cong \angle F[/tex] (Given)
Therefore By AAS congruency [tex]\Delta ABC\cong \Delta GFE[/tex].
Hence Proved.
Learn More about congruent triangles here:
https://brainly.com/question/25063346?referrer=searchResults