A horizontal 745 N merry-go-round of radius
1.45 m is started from rest by a constant
horizontal force of 56.3 N applied tangentially
to the merry-go-round.
Find the kinetic energy of the merry-goround after 3.62 s. The acceleration of gravity
is 9.8 m/s^2
Assume the merry-go-round is a solid cylinder.
Answer in units of J.

Respuesta :

Answer:

The kinetic energy of the merry-goround after 3.62 s is  544J

Explanation:

Given :

Weight w = 745 N

Radius r =  1.45 m

Force =  56.3 N

To Find:

The kinetic energy of the merry-go round after 3.62  = ?

Solution:

Step 1:  Finding the Mass of merry-go-round

[tex]m = \frac{ weight}{g}[/tex]

[tex]m = \frac{745}{9.81 }[/tex]

m = 76.02 kg

Step 2: Finding the Moment of Inertia of solid cylinder

Moment of Inertia of solid cylinder I =[tex]0.5 \times m \times r^2[/tex]

Substituting the values

Moment of Inertia of solid cylinder I  

=>[tex]0.5 \times 76.02 \times (1.45)^2[/tex]

=> [tex]0.5 \times 76.02\times 2.1025[/tex]

=> [tex]79.91 kg.m^2[/tex]

Step 3: Finding the Torque applied T

Torque applied T = [tex]F \times r[/tex]

Substituting the values

T = [tex]56.3 \times 1.45[/tex]

T = 81.635 N.m

 Step 4: Finding the Angular acceleration

Angular acceleration ,[tex]\alpha = \frac{Torque}{Inertia}[/tex]

Substituting the values,

[tex]\alpha = \frac{81.635}{79.91}[/tex]

[tex]\alpha = 1.021 rad/s^2[/tex]

 Step 4: Finding the Final angular velocity

Final angular velocity ,[tex]\omega = \alpha \times t[/tex]

Substituting the values,

[tex]\omega = 1.021 \times 3.62[/tex]

[tex]\omega = 3.69 rad/s[/tex]

Now KE (100% rotational) after 3.62s is:

KE = [tex]0.5 \times I \times \omega^2[/tex]

KE =[tex]0.5 \times 79.91 \times 3.69^2[/tex]

KE = 544J