Answer: [tex]\dfrac{11}{221}[/tex]
Step-by-step explanation:
We know that the total number of cards in a standard deck = 52
Then the number of ways to draw any two card = 52 x (52-1)
= 52 x 51 = 2652 [By Multiplicative principle]
Also , there are 12 face cards in a standard deck , so the number of ways to draw two face cards in succession = 12 x (12-1)
12 x 11= 132 [By Multiplicative principle]
Then, the probability of drawing 2 cards in succession (without replacement) from a standard deck and having them both be face cards would be
[tex]\dfrac{\text{ Number of ways to draw 2 face cards}}{\text{Total number of ways to draw two cards}}[/tex]
[tex]=\dfrac{132}{2652}=\dfrac{11}{221}[/tex]
Hence, the required probability is [tex]\dfrac{11}{221}[/tex] .