Respuesta :

g^5 -g = g(g^4 -1)=g(g^2 -1)(g^2 +1) = g(g-1)(g+1)(g^2 +1)

24g^2 -6g^4 = 6g^2(4 -g^2) = 6g^2(2 -g)(2 +g)

Answer:

The polynomial which is factored completely is  [tex]2g^2+5g+4[/tex] as these are not further factored.        

Step-by-step explanation:

To find : Which polynomial is factored completely?

Solution :

We factor the given polynomial one by one,

1) [tex]g^5-g[/tex]

[tex]g^5-g=g(g^4-1)[/tex]

[tex]g^5-g=g(g^2-1)(g^2+1)[/tex]

[tex]g^5-g=g(g-1)(g+1)(g^2+1)[/tex]

2) [tex]4g^3 + 18g^2+20g[/tex]

[tex]4g^3 + 18g^2+20g=2g(2g^{2}+9g+10)[/tex]

[tex]4g^3 + 18g^2+20g=2g(2g^{2}+5g+4g+10)[/tex]

[tex]4g^3 + 18g^2+20g=2g[g(2g+5)+2(2g+5)][/tex]

[tex]4g^3 + 18g^2+20g=2g(2g+5)(g+2)[/tex]

3) [tex]24g^2 - 6g^4[/tex]

[tex]24g^2 - 6g^4=6g^{2}(4-g^{2})[/tex]

[tex]24g^2 - 6g^4=6g^{2}(2-g)(2+g)[/tex]

4) [tex]2g^2+5g+4[/tex]

This expression is can not be factored with rational number as

[tex]D=b^2-4ac\\D=5^2-4(2)(4)\\D=25-32\\D=-7[/tex]

Discriminant D<0 so there is no rational roots.

So, The polynomial which is factored completely is  [tex]2g^2+5g+4[/tex] as these are not further factored.