Respuesta :
Answer: First option.
Step-by-step explanation:
Below are some transformations for a function [tex]f(x)[/tex]:
1. If [tex]f(x)+k[/tex], the function is shifted "k" units up.
2 If [tex]f(x)-k[/tex], the function is shifted "k" units down.
3. If [tex]f(x-k)[/tex], the function is shifted "k" units right.
4. If [tex]f(x+k)[/tex], the function is shifted "k" units left.
5. If [tex]-f(x)[/tex], the function is reflected over the x-axis.
6. If [tex]f(-x)[/tex], the function is reflected over the y-axis.
Then, given the parent function [tex]f(x)[/tex]:
[tex]f(x)=2^x[/tex]
And knowing that the the other function is:
[tex]g(x)=-2^{(x+4)}-2[/tex]
You can identify that the function [tex]g(x)[/tex] is obtained by:
- Shifting the function [tex]f(x)[/tex] 4 units left.
- Reflecting the function [tex]f(x)[/tex] 4 over the x-axis.
- Shifting the function [tex]f(x)[/tex] 2 units down.
Answer:
A is correct
Step-by-step explanation:
- Shift 4 units left, reflect over the x-axis, shift 2 units down