Respuesta :

Answer:

Table 3

Step-by-step explanation:

The third one.

We have the function

                               [tex]h(x) = \sqrt[3]{-x+2}[/tex]

Now we will insert values of x in that definition o h(x) and see if the values we obtain match the corresponding y values in the table:

                  [tex]h(-6) = \sqrt[3]{-(-6)+2}= \sqrt[3]{6+2}= \sqrt[3]{8} = 2\\h(1) = \sqrt[3]{-1+2}= \sqrt[3]{1}= 1\\h(2) = \sqrt[3]{-2+2}= \sqrt[3]{0}= 0\\h(3) = \sqrt[3]{-3+2}= \sqrt[3]{1}= 1\\h(10) = \sqrt[3]{-10+2}= \sqrt[3]{-8}= -2[/tex]

We can see that the values match the table 3, so the table 3 represents points on the graph of h(x)

Answer:

C

Step-by-step explanation: