Respuesta :
Explanation:
Equation for de Broglie wavelength is as follows.
[tex]\lambda = \frac{h}{mv}[/tex]
where, m = mass of particle moving
v = velocity
h = Planck's constant = [tex]6.626 \times 10^{-34} Js[/tex]
When particle is electron then value of mass is [tex]9.109 \times 10^{-31} kg[/tex].
Wavelength of electron = 0.26 nm
= [tex]0.26 nm \times \frac{10^{-9}}{1 nm}[/tex]
= [tex]0.26 \times 10^{-9}[/tex] nm
Therefore, speed of electron will be calculated as follows.
v = [tex]\frac{h}{m \lambda}[/tex]
= [tex]\frac{6.626 \times 10^{-34} Js}{2.6 \times 10^{-10} \times 9.109 \times 10^{-31} kg}[/tex]
= [tex]2.79 \times 10^{6} m/s[/tex]
Thus, we can conclude that speed at which electrons be accelerated to obtain a resolution of 0.26 is [tex]2.79 \times 10^{6} m/s[/tex].