Calculate the average power output (in watts) of a photodetector that collects 8.0 x 107 photons in 3.8 ms from monochromatic light of wavelength (a) 470 nm, the wavelength produced by some commercially available light-emitting diodes (LED), and (b) 780 nm, a wavelength produced by lasers that are commonly used in compact disc (CD) players. Hint: The total energy emitted by a source or collected by a detector in a given interval is its power multiplied by the time interval of interest (1 J = 1 W s).

Respuesta :

Answer:

[tex]8.90392\times 10^{-9}\ W[/tex]

[tex]5.36518\times 10^{-9}\ W[/tex]

Explanation:

h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

t = Time taken = 3.8 ms

[tex]\lambda[/tex] = Wavelength

n = Number of protons = [tex]8\times 10^7[/tex]

Power is given by

[tex]P=\dfrac{E}{t}\\\Rightarrow P=\dfrac{nh\dfrac{c}{\lambda}}{t}\\\Rightarrow P=\dfrac{8\times 10^7\times 6.626\times 10^{-34}\times \dfrac{3\times 10^8}{470\times 10^{-9}}}{3.8\times 10^{-3}}\\\Rightarrow P=8.90392\times 10^{-9}\ W[/tex]

The power is [tex]8.90392\times 10^{-9}\ W[/tex]

[tex]P=\dfrac{nh\dfrac{c}{\lambda}}{t}\\\Rightarrow P=\dfrac{8\times 10^7\times 6.626\times 10^{-34}\times \dfrac{3\times 10^8}{780\times 10^{-9}}}{3.8\times 10^{-3}}\\\Rightarrow P=5.36518\times 10^{-9}\ W[/tex]

The power is [tex]5.36518\times 10^{-9}\ W[/tex]