Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of 1. The probability that Z is less than 1.15 is:_________

Respuesta :

Answer:

0.8749

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 0, \sigma = 1[/tex]

The probability that Z is less than 1.15 is:

This is the pvalue of Z = 1.15, which is 0.8749.