9 cm
3 cm
AB is parallel to DC.
AD = 9 cm, DC = 3 cm. Angle BCD = 35°
Angle ABD = 90°
Calculate the size of angle BAD.
Give your answer correct to one decimal place.​

9 cm3 cmAB is parallel to DCAD 9 cm DC 3 cm Angle BCD 35Angle ABD 90Calculate the size of angle BADGive your answer correct to one decimal place class=

Respuesta :

Answer:

∴ ∠BAD = [tex]sin^{-1}[/tex](0.2044) = 11.8°

Step-by-step explanation:

i) AD = 9 cm

ii) DC = 3 cm

iii) ∠BCD = 35°

iv) Since AB is parallel to DC and ∠ABD = 90°  then we can conclude that ∠BDC = 90°.

v) [tex]\frac{BD}{DC} = \frac{BD}{3\hspace{0.1cm}cm} = tan(35)[/tex] = 0.6128      ∴ BD  = 3 [tex]\times[/tex] 0.6128 = 1.84 cm

vi) ∴ sin(∠ BAD ) = [tex]\frac{BD}{AD}[/tex]      ⇒     sin(∠ BAD ) = [tex]\frac{1.84}{9}[/tex] = 0.2044

     ∴ ∠BAD = [tex]sin^{-1}[/tex](0.2044) = 11.8°