Respuesta :

17.Therefore x=[tex]31^\circ[/tex] and y= [tex](\frac{123}{3})^ {\circ}[/tex]

18.Therefore x = 9 units and y = 10.5 units

19.Therefore [tex]x=15^\circ[/tex] and y = 7 units

Step-by-step explanation:

17.

Opposite angles of a parallelogram are equal.

So [tex]3y^{\circ}=123^{\circ}[/tex]

⇒ y= [tex](\frac{123}{3})^ {\circ}[/tex]

and sum of adjacent angle is = [tex]180^{\circ}[/tex]

Therefore, [tex](2x-5)^{\circ} + 123^ {\circ}=180^{\circ}[/tex]

⇒[tex](2x-5)^{\circ} =180^{\circ}-123^ {\circ}[/tex]

⇒[tex]2x^\circ=57^\circ+5^\circ[/tex]

⇒x=[tex]31^\circ[/tex]

Therefore x=[tex]31^\circ[/tex] and y= [tex](\frac{123}{3})^ {\circ}[/tex]

18.

The diagonals  of rectangle bisect each other.

so, 2x=x+9

⇔2x- x=9

⇔x = 9 units

Again opposite sides are congruent.

So,3y -9 =y+12

⇔3y - y =12+9

⇔y [tex]=\frac{21}{2}[/tex] units =10.5 units

Therefore x = 9 units and y = 10.5 units

19.

[tex]3x^\circ=45^\circ[/tex]         [∵ they are transversal angles]

⇔[tex]x=15^\circ[/tex]

And opposite sides are equal

7y = 4y + 21

⇔7y - 4y = 21

⇔3y = 21

⇔y = 7 units

Therefore [tex]x=15^\circ[/tex] and y = 7 units