Two infinite nonconducting sheets of charge are parallel to each other, with sheet A in the x = -2.15 plane and sheet B in the x = +2.15 m plane. Find the electric field in the region x < -2.15 m, in the region x > +2.15 m, and between the sheets for the following situations.

(a) when each sheet has a uniform surface charge density equal to +3.25 µC/m2 region (m) electric field (N/C)
x < -2.15 ________________

x > +2.15 ________________

-2.15 < x < +2.15 _________________

(b) when sheet A has a uniform surface charge density equal to +3.25 µC/m2 and sheet B has a uniform surface charge density equal to -3.25 µC/m2

region (m) electric field (N/C)
x < -2.15 __________________

x > +2.15 __________________

-2.15 < x < +2.15 _____________________

Respuesta :

Answer:

a) (-367231.63i ,  367231.63i, 0) N/C

b) (0 , 0  , 367231.63i ) N/C

Explanation:

a)

Case x < -2.15

[tex]E =E_{+} + E_{+} \\E = 2*\frac{sigma}{2e_{0} } = \frac{sigma}{e_{0} }\\\\E = \frac{3.25*10^(-6)}{8.85*10^(-12) }\\\\E = - 367231.63 i[/tex]

Case x > 2.15

[tex]E =E_{+} + E_{+} \\E = 2*\frac{sigma}{2e_{0} } = \frac{sigma}{e_{0} }\\\\E = \frac{3.25*10^(-6)}{8.85*10^(-12) }\\\\E = +367231.63 i[/tex]

Case -2.15 < x <+2.15

[tex]E =E_{+} - E_{+} \\\\E = 0[/tex]

b)

Case x < -2.15

[tex]E =E_{+} - E_{+} \\\\E = 0[/tex]

Case x > 2.15

[tex]E =E_{+} - E_{+} \\\\E = 0[/tex]

Case -2.15 < x <+2.15

[tex]E =E_{+} + E_{-} \\E = 2*\frac{sigma}{2e_{0} } = \frac{sigma}{e_{0} }\\\\E = \frac{3.25*10^(-6)}{8.85*10^(-12) }\\\\E = +367231.63 i[/tex]