contestada

In the hydrogen atom, what is the total energy of an electron that is in an orbit that has a radius of 8.784 × 10^(-10) m?

Respuesta :

Answer:

The total energy of an electron in H atom is [tex]1.31\times10^{-19}\ J[/tex].

Explanation:

Given that,

Radius [tex]R=8.784\times10^{-10}\ m[/tex]

We need to calculate the orbit number

Using formula of radius

[tex]R=a_{0}n^2[/tex]

[tex]n^2=\dfrac{R}{a_{0}}[/tex]

Where, a₀ = boar radius

n = orbit number

Put the value into the formula

[tex]n^2=\dfrac{8.784\times10^{-10}}{0.529\times10^{-10}}[/tex]

[tex]n=\sqrt{\dfrac{8.784\times10^{-10}}{0.529\times10^{-10}}}[/tex]

[tex]n=4.07[/tex]

We need to calculate the total energy of an electron in H atom

Using formula of energy

[tex]E=-\dfrac{13.6}{n^2}[/tex]

Put the value into the formula

[tex]E=\dfrac{-13.6}{16.60}\ ev[/tex]

[tex]E=0.8192\times1.6\times10^{-19}[/tex]

[tex]E=1.31\times10^{-19}\ J[/tex]

Hence, The total energy of an electron in H atom is [tex]1.31\times10^{-19}\ J[/tex].

Otras preguntas