Respuesta :

The number is [tex]\frac{49+3\sqrt{89}}{40}[/tex]  OR [tex]\frac{49-3\sqrt{89}}{40}[/tex]

Step-by-step explanation:

The reciprocal of a number means

  • Switch the numerator and the denominators of the number
  • The product of a number and its reciprocal is 1
  • The reciprocal of n is [tex]\frac{1}{n}[/tex]

Assume that the number is x

∵ The number is x

∴ Its reciprocal is [tex]\frac{1}{x}[/tex]

- Add the number and its reciprocal and equate the sum by [tex]2\frac{9}{20}[/tex]

∵ [tex]x+\frac{1}{x}=2\frac{9}{20}[/tex]

- Change the mixed number to an improper fraction

∵ [tex]2\frac{9}{20}=\frac{(2)(20)+9}{20}=\frac{49}{20}[/tex]

∴ [tex]x+\frac{1}{x}=\frac{49}{20}[/tex]

- Multiply the two sides by x

∵ [tex]x(x)=x^{2}[/tex]

∵ [tex]\frac{1}{x}(x)=1[/tex]

∵ [tex]\frac{49}{20}(x)=\frac{49}{20}x[/tex]

∴ x² + 1 = [tex]\frac{49}{20}[/tex] x

- Subtract both sides by   [tex]\frac{49}{20}[/tex] x

∴ x² -  [tex]\frac{49}{20}[/tex] x + 1 = 0

Now use your calculator to solve it and find the values of x

∴ [tex]x=\frac{49+3\sqrt{89}}{40}[/tex]  and  [tex]x=\frac{49-3\sqrt{89}}{40}[/tex]

To check your answer add the number to its reciprocal the answer must be [tex]2\frac{9}{20}[/tex]

∵  [tex]\frac{49+3\sqrt{89}}{40}+\frac{40}{49+3\sqrt{89}}=2\frac{9}{20}[/tex]

∵ [tex]\frac{49-3\sqrt{89}}{40}+\frac{40}{49-3\sqrt{89}}=2\frac{9}{20}[/tex]

The number is [tex]\frac{49+3\sqrt{89}}{40}[/tex]  OR [tex]\frac{49-3\sqrt{89}}{40}[/tex]

Learn more:

You can learn more about the numbers in brainly.com/question/10736268

#LearnwithBrainly