Respuesta :

Answer:

[tex]\displaystyle x=\frac{5}{2}, x=\frac{2}{5}[/tex]

Step-by-step explanation:

Quadratic Equations

The quadratic equation has the following general form

[tex]ax^2+bx+c=0[/tex]

It can be solved by several methods, including the well-known quadratic formula

[tex]\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

The question requires us to find a number that added with its reciprocal results 2 9/10. If x is the required number

[tex]\displaystyle x+\frac{1}{x}=2\ \frac{9}{10}=\frac{29}{10}[/tex]

Operating

[tex]\displaystyle \frac{x^2+1}{x}=\frac{29}{10}[/tex]

Rearranging

[tex]10(x^2+1)=29x[/tex]

[tex]10x^2-29x+10=0[/tex]

Comparing with the general quadratic equation, we have

[tex]a=10,\ b=-29,\ c=10[/tex]

Using the formula

[tex]\displaystyle x=\frac{29\pm \sqrt{(-29)^2-4(10)(10)}}{2(10)}[/tex]

[tex]\displaystyle x=\frac{29\pm \sqrt{441}}{20}=\frac{29\pm 21}{20}[/tex]

It gives us two possible solutions

[tex]\displaystyle \boxed{x=\frac{5}{2}, x=\frac{2}{5}}[/tex]

Both are valid solutions since

[tex]\displaystyle \frac{5}{2}+\frac{2}{5}=\frac{29}{10}[/tex]