Design a sine function with the given properties:
It has a period of 24 hr with a minimum value of 10 at t=4 hr and a maximum value of 16 at t=16 hr.
please show all the steps

Respuesta :

Answer:

[tex]f(x)=3\sin\left(\frac{\pi}{12}\left(x-10\right)\right)+13[/tex].

Step-by-step explanation:

Given information:

Period = 24 hr

Maximum = 16 at t=16 hr.

Minimum = 10 at t=4 hr.

The general sin function is

[tex]y=A+\sin(B(x-C))+D[/tex]        .... (1)

where, |A| is altitude, [tex]\frac{2\pi}{B}[/tex] is period, C is phase shift and D is midline.

Period is 24 hr.

[tex]24=\dfrac{2\pi}{B}\Rightarrow B=\dfrac{\pi}{12}[/tex]

Altitude is

[tex]A=\dfrac{Maximum-Minimum}{2}=\dfrac{16-10}{2}=3[/tex]

[tex]D=\dfrac{Maximum+Minimum}{2}=\dfrac{16+10}{2}=13[/tex]

The function is minimum at t=4 and maximum at t=16,phase shift is

[tex]C=\dfrac{16+4}{2}=10[/tex]

Substitute these values in equation (1).

[tex]y=3\sin\left(\frac{\pi}{12}\left(x-10\right)\right)+13[/tex]

Therefore, the required function is [tex]f(x)=3\sin\left(\frac{\pi}{12}\left(x-10\right)\right)+13[/tex].