Respuesta :

Answer:

1) 5

2) 5

Step-by-step explanation:

Data provided in the question:

(3²⁷)(5¹⁰)(z) = (5⁸)(9¹⁴)([tex]x^y[/tex])

Now,

on simplifying the above equation

⇒ (3²⁷)(5¹⁰)(z) = (5⁸)((3²)¹⁴)([tex]x^y[/tex])

or

⇒  (3²⁷)(5¹⁰)(z) = (5⁸)(3²⁸)([tex]x^y[/tex])

or

⇒ [tex](\frac{3^{27}}{3^{28}})(\frac{5^{10}}{5^8})z=x^y[/tex]

or

⇒[tex](\frac{5^2}{3})z=x^y[/tex]

or

⇒[tex]\frac{5^2}{3}=\frac{x^y}{z}[/tex]

we can say

x = 5, y = 2 and, z = 3

Now,

(1) y is prime

since, 2 is a prime number,

we can have

x = 5

2) x is prime

since 5 is also a prime number

therefore,

x = 5