Respuesta :

Option A

The vertex is (h, k) = (5, -25)

Solution:

Given function is:

[tex]f(x) = x^2-10x[/tex]

The vertex form is given as:

[tex]y = a(x-h)^2+k[/tex]

where (h, k) is the vertex

Rewrite the equation in vertex form

[tex]f(x) = x^2-10x[/tex]

Complete the square for  [tex]x^2-10x[/tex]

Use the form [tex]ax^2+bx+c[/tex] to find the values of  a, b, c

a = 1 , b = -10, c = 0

Consider the vertex form of a parabola

[tex]a(x+d)^2+e[/tex]

Substitute the values of a and b into the following formula to find "d" :

[tex]d = \frac{b}{2a}\\\\d = \frac{-10}{2 \times 1}\\\\d = -5[/tex]

Find the value of "e" using the formula,

[tex]e = c - \frac{b^2}{4a}\\\\e = 0 - \frac{(-10)^2}{4 \times 1}\\\\e = -25[/tex]

Substitute the value of a, d, e into vertex form

[tex]a(x+d)^2+e\\\\1(x-5)^2-25\\\\(x-5)^2-25[/tex]

Set y equal to above equation

[tex]y = (x-5)^2-25[/tex]

Compare the above equation with vertex form

[tex]y = a(x-h)^2+k[/tex]

[tex]y = (x-5)^2-25[/tex]

We find, h = 5 and k = -25

Thus the vertex is (h, k) = (5, -25)